Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The capacity for photosynthetic acclimation in Arabidopsis thaliana (L.) Heynh. cv. Landsberg erecta was assessed during growth over a broad range of irradiance. Discontinuities in the response to growth irradiance were revealed for the light- and CO2-saturated rate of photosynthesis (Pmax) and the ratio of chlorophyll a to chlorophyll b (Chl a/b). Three separate phases in the response of Pmax and Chl a/b to growth light were evident, with increases at low and high irradiance ranges and a plateau at intermediate irradiance. By measuring all chlorophyll-containing components of the thylakoid membrane that contribute to Chl a/b we reveal that distinct strategies for growth at low and high irradiance underlie the discontinuous response. These strategies include, in addition to changes in the major light-harvesting complexes of photosystem II (LHCII), large shifts in the amounts of both reaction centres as well as significant changes in the levels of minor LHCII and LHCI components.

Original publication

DOI

10.1007/s004250100556

Type

Journal article

Journal

Planta

Publication Date

09/2001

Volume

213

Pages

794 - 801

Keywords

Acclimatization, Arabidopsis, Carbon Dioxide, Chlorophyll, Chlorophyll A, Light, Light-Harvesting Protein Complexes, Oxygen Consumption, Photosynthesis, Photosynthetic Reaction Center Complex Proteins, Photosystem II Protein Complex, Ribulose-Bisphosphate Carboxylase