New genetic research can significantly improve drug development

Genetic research in large-scale prospective biobank studies can significantly improve the drug development pipeline and reduce costs, according to a new study[1] published in the International Journal of Epidemiology this week.

New treatments are discovered by exploring biological pathways that cause disease but can be modified by drugs. The pathway from the basic biology to large-scale randomized trials in humans is long and expensive – estimated at over $1.2 billion to get one product to market. Lipoprotein associated phospholipase A2 (Lp-PLA₂) circulates with cholesterol in the blood and high levels are associated with increased risk of cardiovascular disease, so inhibiting Lp-PLA₂ might be beneficial. Darapladib, an inhibitor of Lp-PLA₂, was developed by Human Genome Sciences which GlaxoSmithKline (GSK) bought for US$ 3 billion in 2012. But two large phase III trials of darapladib funded by GSK were disappointing failures. The investment in the Lp-PLA₂ inhibitor did not pay off because the biological pathway turned out to be not causal.

Researchers at the University of Oxford and the Chinese Academy of Medical Sciences joined forces with GSK to explore whether this disappointing result could have been predicted by using a genetic variant that mimics the drug effect. People with a non-functioning variant have lower levels of Lp-PLA₂ so the idea is to see if these people have a lower risk of cardiovascular disease than those with functioning variants. In a study of over 90,000 participants in the prospective China Kadoorie Biobank (CKB) study, the association between this genetic variant and a range of cardiovascular and non-cardiovascular diseases was explored. This method is termed “Mendelian randomization” because it relies on the way the play of chance determines the genetic variants inherited at conception, and allows nature to mimic randomised controlled trials.

The researchers found that people with a non-functioning genetic variant were not at lower risk of developing cardiovascular (and other non-cardiovascular) diseases – upholding the trial findings. Compared with the many steps in the traditional pathway to drug development (at a cost of several billion dollars) the availability of large scale biobanks make the cost of carrying out Mendelian randomization analyses trivial. This methodology is likely to be much more widely used to examine the causal nature of biological pathways involved in diseases before mounting large-scale trials in the future.

Study lead author Dr Iona Millwood, from the University of Oxford, said “Our research used a genetic variant only found in East Asians, and demonstrates the value of prospective biobank studies with genetic data linked to health records, carried out in different global populations, to predict the potential benefits or harms of new drug targets.”

Professor Zhengming Chen, senior author and the principal investigator of the China Kadoorie Biobank at the University of Oxford, said “CKB is a powerful resource. Our ongoing research includes measurement of thousands of functional genetic variants which may represent potential drug targets in different biological pathways, and we are using the same approach to assess a number of other important therapeutic targets”.

The study showed that genetics has a huge potential to improve the drug development pipeline and close collaborations between the pharmaceutical industry and academic researchers is likely to play an important role in future drug discovery and development, capitalising on the large prospective biobank studies already established.

Embargoed until 00.05 BST on Wednesday 15th June 2016
Notes to editors

Press contact:
Chloe Foster, Oxford University Press
chloe.foster@oup.com | +44 (0) 1865 353584

The authors can also be contacted directly:
Dr Iona Millwood, Nuffield Department of Population Health, University of Oxford, UK
Telephone: +44 1865 743612
Email: iona.millwood@ndph.ox.ac.uk

Professor Zhengming Chen, Nuffield Department of Population Health, University of Oxford, UK
Telephone: +44 1865 743839; mobile: +44-7917771693
Email: zhengming.chen@ndph.ox.ac.uk

The full article can be downloaded by journalists before publication here:

N.B. Journalists: please don’t use this link in any stories that you publish. It is for the exclusive use of the media BEFORE publication. After publication the paper will be replaced, so please link to the published paper on the IJE website.

The International Journal of Epidemiology encourages communication among those engaged in the research, teaching, and application of epidemiology of both communicable and non-communicable disease, including research into health services and medical care. The journal is published by Oxford University Press on behalf of the International Epidemiological Association. Follow the IJE on Twitter: @IJEeditorial

Please acknowledge source as the International Journal of Epidemiology in any reports.

Oxford Journals is a division of Oxford University Press. We publish well over 230 academic and research journals covering a broad range of subject areas, two-thirds of which are published in collaboration with learned societies and other international organizations. We have been publishing journals for more than a century, and as part of the world’s oldest and largest university press, have more than 500 years of publishing expertise behind us. Follow Oxford Journals on Twitter: @OxfordJournals