Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mantle cell lymphoma (MCL) is an incurable B-cell non-Hodgkin lymphoma, and patients who relapse on targeted therapies have poor prognosis. Protein arginine methyltransferase 5 (PRMT5), an enzyme essential for B-cell transformation, drives multiple oncogenic pathways and is overexpressed in MCL. Despite the antitumor activity of PRMT5 inhibition (PRT-382/PRT-808), drug resistance was observed in a patient-derived xenograft (PDX) MCL model. Decreased survival of mice engrafted with these PRMT5 inhibitor-resistant cells vs treatment-naive cells was observed (P = .005). MCL cell lines showed variable sensitivity to PRMT5 inhibition. Using PRT-382, cell lines were classified as sensitive (n = 4; 50% inhibitory concentration [IC50], 20-140 nM) or primary resistant (n = 4; 340-1650 nM). Prolonged culture of sensitive MCL lines with drug escalation produced PRMT5 inhibitor-resistant cell lines (n = 4; 200-500 nM). This resistant phenotype persisted after prolonged culture in the absence of drug and was observed with PRT-808. In the resistant PDX and cell line models, symmetric dimethylarginine reduction was achieved at the original PRMT5 inhibitor IC50, suggesting activation of alternative resistance pathways. Bulk RNA sequencing of resistant cell lines and PDX relative to sensitive or short-term-treated cells, respectively, highlighted shared upregulation of multiple pathways including mechanistic target of rapamycin kinase [mTOR] signaling (P < 10-5 and z score > 0.3 or 

Original publication

DOI

10.1182/bloodadvances.2023010554

Type

Journal

Blood Adv

Publication Date

09/01/2024

Volume

8

Pages

150 - 163

Keywords

Humans, Mice, Animals, Adult, Lymphoma, Mantle-Cell, Cell Line, Tumor, Neoplasm Recurrence, Local, Signal Transduction, Enzyme Inhibitors, Mechanistic Target of Rapamycin Complex 1, Protein-Arginine N-Methyltransferases