Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The Cullin-RING ubiquitin ligase 4 (CRL4) is implicated in controlling cell cycle, DNA damage repair, and checkpoint response based on studies employing cell lines and mouse models. CRL4 proteins, including CUL4A and CUL4B, are often highly accumulated in human malignancies. Elevated CRL4 attenuates DNA damage repair and increases genome instability that is believed to facilitate tumorigenesis. However, this has yet to be evaluated in human patients with cancer. In our study, 352 lung cancer and 62 normal lung specimens of Asian origin were constructed into tissue microarrays of four distinct lung cancer subtypes. Expression of CUL4A, CUL4B, and their substrates was detected by immunohistochemistry and analyzed statistically for their prognostic value and association with DNA damage response and genomic instability. Our results show that both CUL4A and CUL4B are overexpressed in the majority of lung carcinomas (PCUL4A <0.001 and PCUL4B <0.001) and significantly associated with tumor size (PCUL4A <0.001 and PCUL4B = 0.002), lymphatic invasion (PCUL4A = 0.004 and PCUL4B <0.001), metastasis (PCUL4A = 0.019 and PCUL4B = 0.006), and advanced TNM stage (PCUL4A <0.001 and PCUL4B <0.001), which parallels gene amplification and abnormal activation of the canonical WNT signaling. Moreover, overexpression of CUL4A, but not CUL4B, is significantly associated with tobacco smoking (p = 0.01) and is inversely correlated with XPC and P21, both of which are substrates of CUL4A (PCUL4A = 0.019 and PCUL4B = 0.006). Higher levels of CUL4A or CUL4B are significantly associated with the overall survival of patients (PCUL4A <0.001 and PCUL4B <0.001) and progression-free survival (PCUL4A <0.001 and PCUL4B = 0.001). Our findings revealed that CUL4A and CUL4B are differentially associated with etiologic factors for pulmonary malignancies and are independent prognostic markers for the survival of distinct lung cancer subtypes.

Original publication

DOI

10.1074/jbc.M116.765230

Type

Journal article

Journal

Journal of Biological Chemistry

Publication Date

17/02/2017

Volume

292

Pages

2966 - 2978